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Abstract In this paper, a thermal wave method is applied to investigate the
non-steady effective thermal conductivity of unidirectional fibrous composites with a
functionally graded interface, and the analytical solution of the problem is obtained.
The Fourier heat conduction law is applied to analyze the propagation of thermal waves
in the fibrous composite. The scattering and refraction of thermal waves by a cylin-
drical fiber with an inhomogeneous interface layer in the matrix are analyzed, and the
results of the single scattering problem are applied to the composite medium. The wave
fields in different material layers are expressed by using the wave function expansion
method, and the expanded mode coefficients are determined by satisfying the bound-
ary conditions of the layers. The theory of Waterman and Truell is employed to obtain
the effective propagating wave number and the non-steady effective thermal conduc-
tivity of composites. As an example, the effects of a graded interface on the effective
thermal conductivity of composites are graphically illustrated and analyzed. Analysis
shows that the non-steady effective thermal conductivity under higher frequencies is
quite different from the steady thermal conductivity. In the region of intermediate and
high frequencies, the effect of the properties of the interface on the effective thermal
conductivity is greater. Comparisons with the steady thermal conductivity obtained
from other methods are also presented.
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Nomenclature
λ Thermal conductivity of the matrix
c Specific heat capacity of the matrix
ρ Mass density of the matrix
λ0 Thermal conductivity of the fiber
c0 Specific heat capacity of the fiber
ρ0 Mass density of the fiber
a0 Radius of fibers
am−1 Inner radius of each shell
am Outer radius of each shell
h Thickness of the interface
hm Thickness of each shell
Cl Boundaries of the fiber and the shells
∇2 Two-dimensional Laplacian operator
T Temperature in composite materials
D Thermal diffusivity
T0 Average temperature
ω Incident frequency of thermal waves
ϑ Wave field of thermal waves
κ Propagating wave number of thermal waves
k Incident wave number
ϑ0 Temperature amplitude of incident thermal waves
Jm(·) mth Bessel function of the first kind
H (1)

m (·) mth Hankel function of the first kind
Am, Bm, Em, Fm Mode coefficients
H (2)

m mth Hankel function of the second kind
fr (θ) Far-field scattering amplitudes
K Propagating wave number in the effective medium
N Number of the fibers per unit volume
m Total wave field in the matrix
Vf Volume fraction of fibers

Subscript
l lth layer
n nth layer

Superscript
i Incident wave field
s Scattered wave field
r Refracted wave field
m Total wave field in the matrix
qr Heat flow density in the radial direction
eff Effective properties of composites
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1 Introduction

Composite materials are extensively used in engineering fields for thermal transfer
applications. The thermal conductivity is an important property of composites used in
electronic packing, thermal insulation, heat spreader, etc. [1]. In order to design and
manufacture an optimal material system, the development of micromechanics mod-
els to accurately predict the effective thermal conductivity of multiphase composite
materials is desirable.

Extensive theoretical and experimental studies on the effective thermal conductiv-
ity of a two-phase composite material under different loadings have received great
interest in recent years. The methods used to measure the thermal conductivity are
divided into two groups: the steady-state and the non-steady-state methods. In the first
one, the sample is subjected to a constant heat flow. In the second group, a periodic
or transient heat flow is established in the sample [2]. In the past, much attention has
been focused on the problems of steady state.

The earliest models for the thermal behavior of composites assumed that the two
components are both homogeneous, and are perfectly bounded across a sharp and
distinct interface. The Maxwell solution [3] is the starting point to find the effective
thermal conductivity of two-phase material systems, but it is only valid for very low
concentrations of the dispersed phase. Subsequently, many structural models, e.g., par-
allel, Maxwell-Eucken [4], and effective medium theory models [5], were proposed.
Recently, Samantray et al. [6] applied the unit-cell approach to study the effective
thermal conductivity of two-phase materials. Based on an effective medium theory,
Bagchi and Nomura [7] developed a theoretical model to predict the effective thermal
conductivity of an aligned multi-walled nano-tube polymer composite. The idea of
the generalized self-consistent model was also developed by Hashin [8] to determine
the effective thermal conductivity of two-phase materials.

In many high-temperature situations, non-steady heat flux is more common. Due
to the complexity of non-steady loading, till date, very little work treating the non-
steady effective thermal properties has been done. Recently, Monde and Mitsutake [9]
proposed a method to determine the thermal diffusivity of solids using an analytical
inverse solution for unsteady heat conduction. By using modulated photothermal tech-
niques, Salazar et al. [2] studied the effective thermal diffusivity of composites made
of a matrix filled with aligned circular cylinders of a different material. Most recently,
Fang and Hu investigated the distribution of dynamic effective thermal properties
along the gradation direction of functionally graded materials by using the Fourier
heat conduction law [10] and the non-Fourier heat conduction law [11]. Some the-
oretical attempts addressing the interfacial characteristics between the inclusion and
the matrix have been made. Based on an equivalent inclusion concept, Hasselman
and Johnson [12] extended Maxwell’s theory to systems of spherical inclusion with
a contact resistance. Benveniste and his co-workers have proposed several analytical
models to predict the effective thermal conductivity of composite materials, which
include the important effects of a thermal contact resistance between the fillers and
the matrix [13], and the coated cylindrically orthotropic fibers with a prescribed ori-
entation distribution [14].
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Nevertheless, little attention has been paid to the non-steady effective thermal
conductivity of composites with interfacial layers. With the wide application of func-
tionally graded materials in aerospace and other high-temperature situations, a study
on the non-steady effective thermal conductivity of composites with interfacial layers
plays a very important role in the design and manufacturing of functionally graded
materials.

In this paper, photothermal-wave techniques are applied to predict the non-steady
effective thermal conductivity of composites with interfacial layers. Photothermal
techniques have become powerful tools for the thermophysical characterization and
non-destructive evaluation (NDE) of various materials in the past few decades. First,
Ocariz et al. applied the photothermal method to locate and characterize the geometri-
cal and thermal properties of the buried cylinder theoretically [15] and experimentally
[16]. Subsequently, Salazar et al. used this method to calculate the in-plane effective
thermal diffusivity of unidirectional fiber-reinforced composites [17] and the surface
temperature of multilayered cylindrical samples [18]. Salazar et al. [19] also extended
this classical flash method to be used with non-planar samples, such as solid cylin-
ders, hollow cylinders, and spheres. Recently, Madariaga and Salazar [20] exploited
this elegant method to express the surface temperature of multilayered spherical sam-
ples with continuously varying in-depth thermal conductivity. In a series of studies
of Wang et al., photothermal radiometry was used for the quantitative NDE of sam-
ples with curved surfaces [21], cylindrical composite structures [22], and spherical
geometries [23].

The main objective of this paper is to investigate the scattering of thermal waves
and the effects of interface layers on the effective thermal conductivity of materials.
A thermal wave is often applied with the Fourier conduction law. Fourier’s law under-
lies the “parabolic thermal wave” associated with a non-linear dependence of the
thermal conductivity on temperature and the “thermal wave method” of measuring
thermal properties. The composite medium contains a random distribution of cylin-
drical inclusions of the same size with interface layers of the same thickness. The
interface layer is modeled by any number of homogeneous layers. The temperature
fields in different regions of the material are expressed by using the wave function
expansion method, and the expanded mode coefficients are determined by satisfying
the boundary conditions at the interfaces. The theory of Waterman and Truell [24] is
applied to obtain the non-steady effective thermal conductivity. The effective thermal
conductivity under different parameters is graphically illustrated and discussed.

2 Dynamical Equation of Heat Conduction and its Solution

Consider a unidirectional composite material containing long, parallel, randomly dis-
tributed cylindrical fibers embedded in an infinite matrix, as depicted in Fig. 1 [25,26].
As is often the case for practical fiber-reinforced plastics, the matrix is assumed to be
isotropic and the fibers transversely isotropic, so the resulting unidirectional compos-
ite also possesses transverse isotropy. The fibers of radius a0 have identical properties.
Let λ, c, ρ be the thermal conductivity, specific heat capacity, and mass density of the
matrix, respectively, and λ0, c0, ρ0 those of the fibers. It is assumed that thick layers
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Fibers with functionally graded interface 

Thermal waves

Fig. 1 Unidirectional fiber arrangement in the matrix and the incidence of thermal waves

of uniform thickness h with variable material properties are present at the interfaces
separating the matrix from each fiber.

It is assumed that a time-harmonic thermal wave propagates in the direction per-
pendicular to the reinforcing fibers. In order to study the scattering of thermal waves
in a fiber-reinforced composite with interfacial layers, we first consider the scattered
field due to a single fiber with an interface layer. Also, let the fiber be separated from
the matrix by n layers. The geometry is depicted in Fig. 2, where (x, y) is the Cartesian
coordinate system with the origin at the center of the fiber and (r, θ) is the correspond-
ing cylindrical coordinate system. The interface layer is subdivided into several thin
cylindrical shells, and the material properties within each shell of inner radius am−1,
outer radius am (m = 1, 2, . . . , n) are λm , cm , ρm . The uniform thickness of the shells
is hm = am − am−1. Let the boundaries of the fiber and the shells be denoted by Cl

(l = 0, 1, 2, . . . , n).
Based on the Fourier heat conduction law, the heat conduction equation in the

composite material, in the absence of heat sources, is described as

∇2T (r, t) = 1

D

∂T

∂t
, (1)

where ∇2 = ∂2/∂x2 + ∂2/∂y2 represents the two-dimensional Laplacian operator, T
the temperature in the composite materials, and D is the thermal diffusivity with

D = λ/(ρc), (2)

where λ, c, and ρ are the thermal conductivity, specific heat at constant pressure, and
density of the matrix, respectively.

The solution of the periodic steady state is investigated. Suppose that

T = T0 + Re[ϑ exp(− jωt)], (3)
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Fig. 2 One cylindrical fiber with interface layers and the layers in composites

where T0 is the average temperature, ω the incident frequency of thermal waves, j the
imaginary unit, and j2 = −1.

Substituting Eq. 3 into Eq. 1, the following equation can be obtained:

∇2ϑ + κ2ϑ = 0, (4)

where κ is the wave number of complex variables, and

κ = (1 + j)k, (5)

with k = √
ω/2D being the incident wave number.

By using the wave function expansion method, the incident thermal waves are
expressed as

ϑ(i) = ϑ0e j(κx−ωt) = ϑ0

∞∑

m=−∞
jm Jm(κr)e jmθe− jωt , (6)

where the superscript (i) stands for the incident waves, ϑ0 the temperature amplitude
of incident thermal waves, and Jm(·) is the mth Bessel functions of the first kind. It
should be noted that all wave fields have the same time variation, e− jωt , which is
omitted in all subsequent representations for notational convenience.

When the thermal waves propagate in the fibrous composite material, the waves
are scattered by the fibers, and the scattering waves from the fibers are expanded in a
series of outgoing Hankel functions. The scattered field in the matrix is expressed in
the form,
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ϑ(s) =
∞∑

m=−∞
Am H (1)

m (κr)e jmθ , (7)

where the superscript (s) stands for the scattered waves, H (1)
m (·) is the mth Hankel

functions of the first kind, and Am are the mode coefficients that account for the
distortion of the scattered cylindrical waves by the fiber.

The total temperature in the matrix should be produced by the superposition of the
incident field and the scattered field, i.e.,

ϑm = ϑ(i) + ϑ(s). (8)

The refracted waves inside the fiber are standing waves, and can be expressed as

ϑr =
∞∑

m=−∞
Bm Jm(κ0r)e jmθ , (9)

where the superscript r stands for the refracted waves, and Bm are the mode coefficients
of refracted waves.

The temperature in the lth layer ϑ l may be described by the sum of the two com-
ponents (outgoing and ingoing) and is expressed in the following form [27,28]:

ϑ l =
[ ∞∑

m=−∞
El

m H (1)
m (κlr)e jmθ +

∞∑

m=−∞
Fl

m H (2)
m (κlr)e jmθ

]
, (10)

where H (2)
m (·) are the mth Hankel functions of the second kind, and denote the ingoing

waves, and El
m and Fl

m are the mode coefficients in the lth layer.
The wave numbers κl in the lthlayer and κ0 in the cylindrical fiber are given by

κl = (1 + j)
√

ω/2Dl (l = 1, 2, . . . , n), (11)

κ0 = (1 + j)
√

ω/2D0, (12)

where Dl = λl/ρl cl and D0 = λ0/ρ0c0.

3 Boundary Conditions and Solution of the Coefficients

The boundary conditions on Cn , Cl , and C0 are given by

ϑn = ϑm, qn
r = qm

r for r = an, (13)

ϑ l = ϑ l+1, ql
r = ql+1

r for r = al (l = 1, 2, . . . , n − 1), (14)

123



1446 Int J Thermophys (2008) 29:1439–1456

ϑ r = ϑ1, qr
r = q1

r for r = a0, (15)

where qr is the heat flow density in the radial direction, and qr = −λ∂ϑ
∂r .

The condition of continuity of temperature on Cn gives

∞∑

m=−∞

[
En

m H (1)
m (κnan)e jmθ + Fn

m H (2)
m (κnan)e jmθ

]

= ϑ0

∞∑

m=−∞
jm Jm(κan)e

jmθ +
∞∑

m=−∞
Am H (1)

m (κan)e jmθ . (16)

Multiplying by e− jsθ and integrating from 0 to 2π , the following equation can be
obtained:

En
s H (1)

s (κnan) + Fn
s H (2)

s (κnan) = ϑ0 j s Js(κan) + As H (1)
s (κan). (17)

The continuous boundary conditions of temperature on Cl and C0 give

El
s H (1)

s (κlal) + Fl
s H (2)

s (κlal) = El+1
s H (1)

s (κl+1al) + Fl+1
s H (2)

s (κl+1al), (18)

Bs Js(κ0a0) = E1
s H (1)

s (κ1a0) + F1
s H (2)

s (κ1a0). (19)

According to the continuous boundary conditions of heat flux density on Cn , Cl

(l = 1, 2, . . . , n − 1) and C0, one can obtain

λn

[
En

s
∂

∂an
H (1)

s (κan) + Fl
s

∂

∂an
H (2)

s (κan)

]

= λ

[
As

∂

∂an
H (1)

s (κan) + ϑ0 js ∂

∂an
Js(κan)

]
, (20)

λl

[
El

s
∂

∂al
H (1)

s (κlal) + Fl
s

∂

∂al
H (2)

s (κlal)

]

= λl+1

[
El+1

s
∂

∂al+1
H (1)

s (κl+1al) + Fl+1
s

∂

∂al+1
H (2)

s (κl+1al)

]
, (21)

λ0

[
Bs

∂

∂a0
Js(κ0a0)

]
= λ1

[
E1

s
∂

∂a0
H (1)

s (κ1a0) + F1
s

∂

∂a0
H (2)

s (κ1a0)

]
. (22)

According to Eqs. 17–22, the expanded coefficient of scattered waves As can be
expressed as

As = −(Ps/Qs)ϑ0 js, (23)
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where

Ps = K i
s − λ

λn
(Rn

s /T n
s )N i

s , (24)

Qs = Ms − λ

λn
(Rn

s /T n
s )Ls. (25)

The recurrence formulas for Rl
s and T l

s are expressed as

Rl
s=

K l
s(al)−Ml

s(al)[λl−1 K l
s(al−1)−λl(Rl−1

s /T l−1
s )Nl

s(al−1)]
[λl−1 Ml

s(al−1)−λl(Rl−1
s /T l−1

s )Ll
s(al−1)]

(l=1, 2, . . . , n),

(26)

T l
s = Nl

s(al)−Ll
s(al)[λl−1 K l

s(al−1)−λl(Rl−1
s /T l−1

s )Nl
s(al−1)]

[λl−1 Ml
s(al−1)−λl(Rl−1

s /T l−1
s )Ll

s(al−1)]
(l=1, 2, . . . , n),

(27)

R0
s = Js(κ0a0), T 0

s = s Js(κ0a0) − κ0a0 Js+1(κ0a0). (28)

Note that K i
s , N i

s , Ms, Ls, Ml
s(al), K l

s(al), Nl
s(al), and Ll

s(al) are given in the
Appendix.

4 Effective Propagating Wave Number of Thermal Waves

We now consider a composite material with N fibers randomly distributed in the
matrix. Their positions of these fibers are denoted by the random variables (r1, r2,

. . . , rN). The total temperature field at any point outside all fibers can be given in the
multiple scattering form,

ϑ(r; r1, r2, . . . , rN ) = ϑ i(r)+
N∑

k=1

T sϑ i (r)

+
N∑

m=1

T s(rm)

N∑

k=1,k �=m

T s(rk)ϑ
i(r)+ · · ·, (29)

where the single summation denotes the primary scattered terms, the double summa-
tion denotes the secondary terms, and so on. The primary scattering is due to the inci-
dent waves alone, and the second scattering represents the rescattering of the primary
scattered waves, etc. The multiple scattering theory takes into account the interaction
among the distributed fibers accurately. However, it is difficult to deal with in order
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to predict the effective properties. Here, we apply the effective field approximation
to describe approximately the interaction among the distributed fibers. Following the
work of Waterman and Truell [24], the effective propagating wave number can be
obtained from the scattered far field.

Once the scattered field due to a single fiber is known, the phase velocities and
attenuations of the coherent waves through the composite can be easily calculated by
the double plane wave theory of Waterman and Truell [24]. The scattered fields for
incident thermal waves at a large distance from the particle can be obtained from Eq. 7
by letting r tend to ∞. After applying the asymptotic expression of the radial function
H (1)

n (κr), the scattered wave in the far fields can be expressed asymptotically;

ϑ(s)
r ∼

√
2

πκr
e j (κr−π/4)( jκϑ0) fr (θ) + o

(
1

r

)
, (30)

where

fr (θ) =
∞∑

s=−∞
(− j)s As

ϑ0
e jsθ . (31)

The function fr (θ) is the far-field scattering amplitudes for the scattered thermal waves.
It is noted that the far-field scattered amplitudes are dependent on the angle θ . The
far-field scattered amplitudes at two specific angles, θ = 0 and θ = π , are of special
interest, and are called the forward and backward scattering amplitudes, respectively.

According to the theory of Waterman and Truell [24], in the case of two-dimensional
scatterers, the effective propagating wave number is expressed as

(
K

k

)2

=
[

1 − 2 j N

k2 f (k, 0)

]2

−
[

2 j N

k2 f (k, π)

]2

, (32)

where K is the propagating wave number in the effective medium and N is the number
of the fibers per unit volume with

N = Vf/πa2
0 , (33)

where Vf is the volume fraction of the randomly distributed cylindrical fibers in the
matrix.

It is noted that f (k, 0) is the forward scattering amplitude of a single scatterer, and
f (k, π) is the backward scattering amplitude of a single scatterer. In the theory of
Waterman and Truell, correlations between the fibers are neglected. Thus, the validity
of Eq. 32 is limited to the low volume concentration of fibers.

5 Non-steady Effective Properties of Fiber-Reinforced Composites

According to Eq. 5, the non-steady effective thermal conductivity λeff in the direction
perpendicular to the reinforcing fibers can be easily obtained from the effective prop-
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agating wave number as follows:

λeff = ρeff ceffλ

ρc
[Re(k/K )]2, (34)

where Re(·) denotes the real part, and ρeff and ceff are the effective mass density and
effective heat capacity of composites. From Ref. [9], it is known that ρeff and ceff

always follow the mixture rule, and ρeff ceff is given by

ρeff ceff = ρc

{
1 − Vf

(
1 + h

a0

)2
}

+ ρ0c0Vf + hVf

na0

n∑

l=1

ρl cl

(
2 + 2l − 1

n

h

a0

)
.

(35)

6 Numerical Examples and Discussion

In the following analysis, it is convenient to make the variables dimensionless. In order
to accomplish this step, a representative length scale a0, where a0 is the radius of fibers,
is introduced. The following dimensionless variables and quantities have been cho-
sen for computation: the incident wave number k∗ = ka0 = 0.1–2.0, h∗ = h/a0 =
0.05–0.20, λ∗ = λ0/λ = 2.0–8.0, c∗ = c0/c = 2.0–4.0, and ρ∗ = ρ0/ρ =2.0–4.0.
The dimensionless effective thermal conductivity is λ∗ = λeff/λ.

Specially designed functionally graded interface layers are introduced for a signifi-
cant improvement of the effective thermal conductivity. The character of the effective
thermal conductivity is dependent on the functional form of gradation. In the graded
interface layer, the properties are related to the microstructure of two constituents.

Following the work of Sato and Shindo [29], the properties of two special cases of
the interface material are considered, and are given by the following equations:

Case I:

PI(r) =
⎧
⎨

⎩

P0 (ri < a0)

(P − P0)
( r−a0

h

) +P0(a0 ≤ ri ≤ a0 + h)

P (ri > a0 + h)

(36)

Case II:

PII(r) =

⎧
⎪⎨

⎪⎩

P0 (ri < a0)

4(P − P0)
(

r−(a0+h/2)
h

)3 + P+P0
2 (a0 ≤ ri ≤ a0 + h)

P (ri > a0 + h),

(37)

where P denotes the properties (thermal conductivity, specific heat, and density) of
composites. The material properties of the layers given above are calculated at the
midpoint of each layer assuming variations of Cases I and II from the boundary of the
inclusion to the matrix medium.
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Fig. 3 Far-field scattering amplitudes as a function of the number of layers (k∗ = 1.0, h∗ = 0.1, λ∗ =
4.0, c∗ = 2.0, ρ∗ = 2.0)

Figures 3 and 4 show the variation of the far-field scattering amplitudes f (κ, 0) for
the scattered thermal waves with the number of layers of n for Case I. The scattered
waves result from a single fiber. Case I refers to the case of the interface material
through which the thermal properties vary linearly from those of the cylindrical fibers
to those of the matrix. In Fig. 3, it can be seen that the truncation of n should increase
with an increase in the thickness of the interface. The truncation of n at 25 gives
adequate results for Case I. Comparing the results in Figs. 3 and 4, it is clear that the
truncation of n should increase with an increase in the ratio of the fiber and matrix.

The non-steady effective thermal conductivity of composites as a function of the
volume fraction of fibers for Case I with parameters: k∗ = 1.0, λ∗ = 4.0, c∗ =
2.0, ρ∗ = 2.0 is presented in Fig. 5. It can be seen that the non-steady effective ther-
mal conductivity increases with an increase of the thickness of the interface. Because
the thermal conductivity of the fiber is greater than that of the matrix, the non-steady
effective thermal conductivity increases with the volume fraction of fibers. The effect
of the interface on the effective thermal conductivity also increases with the volume
fraction of fibers.

Figure 6 illustrates the non-steady effective thermal conductivity as a function of
the volume fraction of fibers for Case I with parameters: Vf = 0.1, λ∗ = 4.0, c∗ = 2.0,

ρ∗ = 2.0. It can be seen that the non-steady effective thermal conductivity increases
with an increase of the dimensionless wave number, then reaches a maximum and tends
to be steady as the wave number increases further. In the region of low frequency, the
effect of the interface on the effective thermal conductivity is less than that in the
region of high frequency. The maximum effective thermal conductivity increases with
the thickness of the interface. The wave number corresponding to the maximum value
increases with a decrease in the thickness of the interface.
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Fig. 5 Non-steady effective thermal conductivity as a function of the volume fraction of fibers (k∗ =
1.0, λ∗ = 4.0, c∗ = 2.0, ρ∗ = 2.0)

Figure 7 illustrates the non-steady effective thermal conductivity as a function of
the volume fraction of fibers for Case I with parameters: Vf = 0.1, λ∗ = 8.0, c∗ = 2.0,

ρ∗ = 2.0. It can be seen that the non-steady effective thermal conductivity increases
with an increase of the dimensionless wave number, then reaches a maximum and
tends to be steady as the wave number further increases. Comparing with the results
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Fig. 6 Non-steady effective thermal conductivity as a function of the dimensionless wave number (λ∗ =
4.0, c∗ = 2.0, ρ∗ = 2.0, Vf = 0.1)
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Fig. 7 Non-steady effective thermal conductivity as a function of the dimensionless wave number (λ∗ =
8.0, c∗ = 2.0, ρ∗ = 2.0, Vf = 0.1)

in Fig. 6, it is clear that the greater the thermal conductivity ratio of the fiber and
matrix, the greater the effect of the thickness of the interface on the effective thermal
conductivity. In the region of intermediate frequency, the effect of the thickness of the
interface on the effective thermal conductivity is greater.
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Fig. 8 Non-steady effective thermal conductivity as a function of the volume fraction of fibers (k∗ =
1.0, λ∗ = 4.0, c∗ = 2.0, ρ∗ = 2.0)

The non-steady effective thermal conductivity of composites as a function of the
volume fraction of fibers for Case II with parameters: k∗ = 1.0, λ∗ = 4.0, c∗ = 2.0,

ρ∗ = 2.0 is presented in Fig. 8. It can be seen that the non-steady effective thermal
conductivity increases with an increase in the volume fraction of fibers and the thick-
ness of the interface. Comparing the results in Fig. 5, it is seen that the non-steady
effective thermal conductivity in Case I is smaller than that in Case II, especially
when the volume fraction of fibers is great.

Figure 9 illustrates the non-steady effective thermal conductivity as a function of
the volume fraction of fibers for Case II with parameters: Vf = 0.1, λ∗ = 4.0, c∗ = 2.0,

ρ∗ = 2.0. It can be seen that the non-steady effective thermal conductivity increases
with an increase in the dimensionless wave number and the thickness of the inter-
face. When the thickness of the interface is relatively small, the variation of the
effective thermal conductivity with the dimensionless wave number is little. Com-
paring with the results in Fig. 6, it is clear that the variation of the effective ther-
mal conductivity with the dimensionless wave number is less in Case II than that in
Case I.

Finally, to demonstrate the validity of this dynamical thermal model, the steady
effective thermal conductivity of two-phase composites without an interface is given.
As k∗ → 0, the dynamic effective thermal conductivity tends to the steady solutions.
In Fig. 10, the results obtained from the present model, the effective medium theory
[4], and Hasselman and Johnson [12] are plotted. Close agreement is seen to exist
between the models at low volume fractions; however, the present model predicts a
lower value of the effective thermal conductivity than does the effective medium theory.
This is consistent with regard to criticism of the conventional effective medium theory
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Fig. 9 Non-steady effective thermal conductivity as a function of the dimensionless wave number (λ∗ =
4.0, c∗ = 2.0, ρ∗ = 2.0, Vf = 0.1)
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Fig. 10 Comparison of the steady effective thermal conductivity with EMT model and Hasselman and
Johnson [12] (λ∗ = 4.0, c∗ = 2.0, ρ∗ = 2.0, h∗ = 0, k∗ = 0)

for overestimating the effective thermal conductivity of two-phase composites when
λ0 > λ. This is attributed to the assumption that the fibers are regarded as the effective
medium even at close range.
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7 Conclusions

The scattering of thermal waves in fibrous composites with a functionally grade
interface is investigated theoretically by employing a wave function expansion method.
The graded interface is divided into a number of layers. The analytical solution of the
non-steady effective thermal conductivity of the composite is presented. The theory
of Waterman and Truell is applied to obtain the effective propagating wave number
of thermal waves. Comparison with the steady effective thermal conductivity demon-
strates the validity of the dynamical thermal model.

It has been found that the non-steady effective thermal conductivity of the com-
posites is dependent on the incident wave number, the material properties ratio of the
fiber and matrix, and the properties of the interface. The non-steady effective thermal
conductivity of the composites increases with an increase in the thickness of the inter-
face, and the thermal conductivity ratio of the fiber and matrix. In contrast to the
homogeneous medium, the frequency of the thermal waves has great influence on the
effective thermal conductivity. In the region of intermediate frequency, the effects of
the thickness of the interface and the thermal conductivity ratio are greater. The effect
of the thickness of the interface also shows a significant difference when the volume
fraction of fibers varies. Therefore, to gain a high effective thermal conductivity, a
greater thickness of the interface layer, a greater thermal conductivity ratio of the fiber
and matrix, and intermediate and high frequencies of dynamic loading are preferable.

The results of this paper can provide guidelines for the design of fiber-reinforced
composites in the presence of a functionally graded interface and would be helpful in
understanding the thermal behavior of composite materials.
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suggestions.

Appendix

The expressions of K i
s , N i

s , Ms, Ls, Ml
s(al), K l

s(al), Nl
s(al), and Ll

s(al) are given by

K i
s = js Js(κan), (A1)

Ms = H (1)
s (κan), (A2)

N i
s = js[s Js(κan) − κan Js+1(κan)], (A3)

Ls = s H (1)
s (κan) − κan H (1)

s+1(κan), (A4)
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Ml
s(al) = H (1)

s (κlal) (l = 1, 2, . . . , n), (A5)

K l
s(al) = H (2)

s (κlal) (l = 1, 2, . . . , n), (A6)

Nl
s(al) = s H (1)

s (κlal) − κlal H (1)
s+1(κlal) (l = 1, 2, . . . , n), (A7)

Ll
s(al) = s H (2)

s (κlal) − κlal H (2)
s+1(κlal) (l = 1, 2, . . . , n). (A8)
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